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ABSTRACT: The image reconstruction of buried inhomogeneous

dielectric cylinders coated on a conductor with known cross-section
is investigated. Inhomogeneous dielectric cylinders coated on a con-

ductor is buried in one half space and scatter a group of unrelated

waves incident from another half space, where the scattered field is

recorded. By proper arrangement of the various unrelated incident
fields, the difficulties of ill-posedness and nonlinearity are circum-

vented, and the permittivity distribution can be reconstructed through

simple matrix operations. The algorithm is based on the moment
method and the unrelated illumination method. Numerical results

show that good reconstruction has been obtained both with and with-

out Gaussian noise in measured data. VVC 2005 Wiley Periodicals, Inc.

Int J Imaging Syst Technol, 15, 172–177, 2005; Published online in Wiley Inter-

Science (www.interscience.wiley.com). DOI 10.1002/ima.20049
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I. INTRODUCTION

Electromagnetic inverse scattering problems of underground

objects have been a growing importance in many different fields of

applied science, with a large potential impact on geosciences and

remote sensing applications (Chiu and Kiang, 1991; Caorsi et al.,

1992; Chiu and Huang, 1996; Tsihrintzis et al., 1999; Akhtar and

Omar, 2000; Cui and Chew, 2000, 2002; Miller et al., 2000; Bucci

et al., 2001; Meincke, 2001; Rekanos and Tsiboukis, 2002; Leone

and Soldovieri, 2003; Rekanos and Raisanen, 2003). Typical exam-

ples are the detection of buried electric cord, power and communi-

cation cables, archaeological remains and so on. The solutions are

considerably more difficult than those involving objects in free

space. This is due to the interaction between the air–earth interface

and the object, which leads to the complicated Green’s function for

this half-space problem. It is well known that one major difficulty

of inverse scattering is its ill-posedness nature (Sabatier, 1983). Ill-

posedness means that a small error in the measured field data may

cause a large error in the reconstructed result. This problem is also

ill-posed because of the face that the kernel of the integral is a

smoothing function. Ill-posedness may be caused by the natural

limitation for propagating waves to carry high spatial frequency

information or by the limited ability of the reconstruction algorithm

to make efficient use of the measured data. Nonlinearity is another

difficulty. The inverse scattering problem is nonlinear in nature

because it involves the product of two unknowns, the electrical

property of object and the electric field within the object.

In the past few years, several numerical techniques have been

reported for electromagnetic imaging reconstruction. Generally

speaking, two kinds of approaches have been developed. The first is

an approximate approach. It makes use of diffraction tomography

type of technique to determine the permittivity of buried dielectric

objects (Cui and Chew, 2000, 2002; Meincke, 2001; Leone and

Soldovieri, 2003). However, this method requires some approxima-

tions, such as Born approximation for buried dielectric objects. In

contrast, the second approach is to solve the exact equation of the

imaging problem by numerical method (Chiu and Kiang, 1991;

Caorsi et al., 1992; Chiu and Huang, 1996; Tsihrintzis et al., 1999;

Akhtar and Omar, 2000; Miller et al., 2000; Bucci et al., 2001; Reka-

nos and Tsiboukis, 2002; Rekanos and Raisanen, 2003). The techni-

que needs no approximation in formulation, but the calculation is

more complex when compared with the approximate approach. How-

ever, the second approach merely dealt with the case of simple

objects, i.e., the scatters are either buried conductors or buried dielec-

tric objects only and there is still no rigorous algorithm for the case

involving both conductors and dielectric objects at the same time. A

typical example for the aforementioned case is the conductors coated

by the buried inhomogeneous dielectric materials.

In this paper, the inverse scattering for buried complex objects,

i.e., scatterer involving both conductors and dielectric objects is

investigated. An efficient algorithm is proposed to reconstruct the

permittivity distribution of the objects by using only the scattered

field measured outside. The algorithm is based on the unrelated illu-

mination method (Wang and Zhang, 1992; Chiu, 1996). In Section II,

the theoretical formulation for electromagnetic inverse scattering is

presented. Numerical results for objects of different permittivity dis-

tributions are given in Section III. Finally, conclusions are drawn in

Section IV.

II. THEORETICAL FORMULATION

Let us consider inhomogeneous dielectric cylinders with relative

permittivity "r(r) coated on a conductor buried in a lossless homo-Correspondence to: Dr. Chien-Ching Chiu; E-mail: chiu@ee.tku.edu.tw
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geneous half-space as shown in Figure 1. Media in regions 1 and 2

are characterized by permittivities "1 and "2, respectively. The per-

meability is �0 for all material, including the scatterers. The axis of

the buried cylinders is the z-axis; that is, the properties of the scat-

terer may vary with the transverse coordinates only. A group of

unrelated incident wave with electric field parallel to the z-axis (i.e.,
transverse magnetic) is illuminated upon the scatterers. Owing to

the interface between region 1 and 2, the incident waves generate

two waves that would exist in the absence of the scatterer: reflected

waves (for y � �a) and transmitted waves (for y > �a). Let the
unperturbed field be represented by

�Eiðx; yÞ ¼ ðEiÞ1ðx; yÞẑ; y � �a

ðEiÞ2ðx; yÞẑ; y > �a

(
: ð1Þ

Then the internal total electric field inside the inhomogeneous

dielectric object, �E(x, y) ¼ E(x, y)ẑ, can be expressed by the follow-

ing integral equation

Eið�rÞ ¼
Z
s

Gð�r; �r 0Þk22½"rð�r 0Þ � 1�Eð�r 0Þ ds0

� j!�0

Z
c

Gð�r; �r 0ÞJsð�r 0Þ dl0 þ Eð�rÞ; y > �a ð2Þ

with

Gðx; y; x0; y0Þ ¼
G1ðx; y; x0; y0Þ; y � �a

G2ðx; y; x0; y0Þ ¼ Gf ðx; y; x0; y0Þ
þ Gsðx; y; x0; y0Þ; y > �a;

8<
: ð3aÞ

G1ðx; y; x0; y0Þ ¼ 1

2�

Z 1

�1

j

�1 þ �2
e j�1ðyþaÞ e�j�2ðy0þaÞ e�jaðx�x0Þ d�;

ð3bÞ

Gf ðx; y; x0; y0Þ ¼ j

4
H

ð2Þ
0 k2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� x0Þ2 þ ðy� y0Þ2

q� �
; ð3cÞ

Gsðx; y; x0; y0Þ ¼ 1

2�

Z 1

�1

j

2�2

�2 � �1
�2 þ �1

� �
e�j�2ðyþ2aþy0Þ e�jaðx�x0Þ d�;

ð3dÞ

�2i ¼ k2i � �2; i ¼ 1; 2; Imð�1Þ � 0; y0 > �a:

Here ki and "r denote the wave number in region i and the relative

permittivity of the dielectric objects. Js is the induced surface cur-

rent density, which is proportional to normal derivative of the elec-

tric field on the conductor surface. G(x, y; x 0, y0) is the Green’s func-
tion, which can be obtained by the Fourier transform (Chiu and

Kiang, 1991). In (3c), H0
(2) is the Hankel function of the second kind

of order 0. For numerical implementation of Green’s function, we

might face some difficulties in calculating this function. This

Green’s function is in the form of an improper integral, which must

be evaluated numerically. However, the integral converges very

slowly when (x, y) and (x0, y0) approach the interface y ¼ �a. Fortu-
nately we find that the integral in G1 or G2 may be rewritten as a

closed-form term plus a rapidly converging integral (Chiu and

Kiang, 1991). Thus the whole integral in the Green’s function can

be calculated efficiently.

The boundary condition states that the total tangential electric

field must be zero on the surface of the perfectly conducting cylin-

der and this yields the following equation�
Eið�rÞ ¼

Z
s

Gð�r; �r 0Þk22 "rð�r 0Þ � 1½ �Eð�r 0Þ ds0

� j!�0

Z
c

Gð�r; �r 0ÞJsð�r 0Þ dI0
�
�r"c

; y > �a: ð4Þ

The scattered field, �Es(x, y) ¼ Es(x, y)ẑ, can be expressed as

Esð�rÞ ¼ �
Z
s

Gð�r; �r 0Þk22½"�ð�r 0Þ � 1�Eð�r 0Þ ds0

þ j!�0

Z
c

Gð�r; �r 0ÞJsð�r 0Þ dl0: ð5Þ

For the direct scattering problem, the scattered field is com-

puted by giving the permittivity distribution of the buried inho-

mogeneous dielectric cylinders coated on conductor objects.

This can be achieved by using (2) and (4) to solve the total field

inside the object E and calculating Es by (5). For numerical

implementation of the direct problem, the dielectric objects are

divided into N1 sufficient small cells. Similarly, we divide the

contour of the conductor into N2 sufficient small segments so

that the induced electric and equivalent magnetic surface cur-

rent density can be considered constant over each segment.

Thus the permittivity and the total field within each cell can be

taken as constants. Then the moment method is used to solve

Figure 1. Geometry of problem in the (x, y) plane.
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(2)–(4) with a pulse basis function for expansion and point

matching for testing. Thus the following matrix equations can

be obtained:

ðEiÞ ¼ ½½G3�½� � þ ½I��ðEÞ þ ½G4�ðJsÞ; ð6Þ

Ei
v

� � ¼ ½G5�½� �ðEÞ þ ½G6�ðJsÞ; ð7Þ

ðEsÞ ¼ �½G7�½� �ðEÞ þ ½G8�ðJsÞ; ð8Þ

where (Ei) and (E) represent the N1 element incident field column vec-

tors. (Ei
v) is the N2 element incident field column vectors. (Es) denotes

theM-element scattered field column vectors. HereM is the number of

measurement points. The matrices [G3] and [G4] are N1 � N1 and

N1 � N2 square matrices, respectively. The matrices [G5] and [G6] are

N2 � N1 and N2 � N2 matrices. The matrices [G7] and [G8] are M �
N1 and M � N2 matrices. The element in matrices [Gi], i ¼ 3, 4,

5 . . . 8 can be obtained by tedious mathematic manipulation (see

Appendix). [�] is N1 � N1 diagonal matrices whose diagonal elements

are formed from the permittivities of each cell minus one. [I] is a iden-
tity N1 � N1 matrix. We can solve the direct problem by using (6)–(8).

We consider the following inverse problem: the permittivity dis-

tribution of the inhomogeneous dielectric cylinders coated on con-

ductor objects is to be computed by knowing the scattered field

measured in region 1. Note that the only unknown permittivity is "r
(r). In the inversion procedure, we choose N1 different incident col-

umn vectors. Then Eqs. (6)–(8) can be expressed as

�
Ei
p

	 ¼ ½½Gp1�½� � þ ½I��½E�; ð9Þ
�
Es
p

	 ¼ �½Gp2�½� �½E�; ð10Þ

where �
Ei
p

	 ¼ ½Ei� � ½G4�½G6��1
�
Ei
v

	
;�

Es
p

	 ¼ ½Es� � ½G8�½G6��1
�
Ei
v

	
;

½Gp1� ¼ ½G3� � ½G4�½G6��1½G5�;
½Gp2� ¼ ½G8�½G6��1½G5� þ ½G7�;

Here [Ei
p] is a N1 � N1 matrix. [Ep

s] is a M � N1 matrix. Note the

matrix [G6] is diagonally dominant and always invertible. It is

worth mentioning that other than the matrix [Gp2], the matrix

[Gp1][�] þ [I] is always a well-posed one in any case. Therefore, by

first solving [E] in (9) and substituting it into (10), then [�] can be

found by solving the following equations

½��½� � ¼ ½��; ð11Þ
where

½�� ¼ ��
Es
p

	�
Ei
p

	�1
;

½�� ¼ �
Es
p

	�
Ei
p

	�1½Gp1� þ ½Gp2�:

From (11), all the diagonal elements in the matrix [�] can be deter-

mined by comparing the element with the same subscripts, which

may be any row of both [C] and [F]:

ð�Þnn ¼
ð�Þmn
ð�Þmn

: ð12Þ

Note that there are a total of M possible values for each element of

� . Therefore, the average value of these M data is computed and

chosen as final reconstruction result in the simulation.

Figure 3. Reconstructed relative permittivity distribution for example 1.

Figure 2. Original relative permittivity distribution for example 1.

174 Vol. 15, 172–177 (2005)
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In the above derivation, the key problem is that the incident

matrix [Ep
i ] must not be a singular matrix, i.e., all the incident col-

umn vectors that form the [Ep
i ] matrix, must be linearly unrelated.

Thus, if the object is illuminated by a group of unrelated incident

waves, it is possible to reconstruct the permittivity distribution of

the objects. Note that when the number of cells becomes very large;

it is difficult to make such a great number of independent measure-

ments. In such a case, some regularization methods must be used to

overcome the ill-posedness.

III. NUMERICAL RESULTS

In this section, we report some numerical results obtained by com-

puter simulations using the method described in the Section II. Let

us consider an inhomogeneous dielectric cylinder coated on a con-

ductor buried at a depth of a ¼ 0.1 m in a lossless half space, as

shown in Figure 1. The permittivities in region 1 and 2 are charac-

terized by "1 ¼ "0 and "2 ¼ 2.25"0. The frequency of the incident

waves is chosen to be 3 GHz and the number of illuminations is the

same as that of cells. The incident waves are generated by numer-

ous groups of radiators operated simultaneously.

Each group of radiators is restricted to transmit a narrow-band-

width pattern that can be implemented by antenna array techniques.

By changing the beam direction and tuning the phase of each group

of radiators, one can focus all the incident beams in turn at each cell

of the object. This procedure is named beam focusing (Wang and

Zhang, 1992). Note that this focusing should be set when the scat-

terer is absent. Clearly, an incident matrix formed in this way is

diagonally dominant and its inverse matrix exists. The measurement

is taken on a half circle of radius 3 m about (0, �a) at equal spac-
ing. The number of measurement point is set to be 8 for each illumi-

nation. For avoiding trivial inversion of finite dimensional prob-

lems, the discretization number for the direct problem is four times

than that for the inverse problem in our numerical simulation.

A 1.2 � 1.8 cm2 rectangular cross-section of a perfectly con-

ducting rod coated with buried dielectric materials with rectangular

cross-sections is our first example. The buried dielectric material is

discretized into 8 � 16 cells and the corresponding dielectric per-

mittivities are plotted in Figure 2. The model is characterized by

simple step distribution of permittivity. Each cell has 0.3 � 0.3 cm2

cross-sections. The reconstructed permittivity distributions of the

object are plotted in Figure 3. The root-mean-square (RMS) error is

about 1.1%. It is clear that the reconstruction is good.

In the second example, the 1.4 � 1.4 cm2 square cross-section

of a perfectly conducting rod coated with buried dielectric materials

with square cross-sections is discretized into 12 � 12 cells, and the

corresponding dielectric permittivities are plotted in Figure 4. Each

cell has 0.35 � 0.35 cm2 cross-sections. The reconstructed permit-

tivity distributions of the object are plotted in Figure 5. The RMS

error is about 1.48%. We can see the reconstruction is also good.

For investigating the effect of noise, we add to each complex

scattered field a quantity b þ cj, where b and c are independent ran-
dom numbers having a Gaussian distribution over 0 to the noise

level times the rms value of the scattered field. The noise levels

applied include 10�5, 10�4, 10�3, 10�2, and 10�1 in the simula-

tions. The numerical results for example 1 and 2 are plotted in

Figure 6 and Figure 7, respectively. It is seen that the effect of noise

is tolerable for noise levels below 1%.

Figure 5. Reconstructed relative permittivity distribution for example 2.

Figure 4. Original relative permittivity distribution for example 2.

Vol. 15, 172–177 (2005) 175
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IV. CONCLUSIONS

An efficient algorithm for reconstructing the permittivity distribution

of buried inhomogeneous dielectric cylinders coated on a conductor

has been proposed. By properly arranging the direction and the polar-

ization of various unrelated waves, the difficulty of ill-posedness and

nonlinearity is avoided. Thus, the permittivity distribution can be

obtained by simple matrix operations. The moment method has been

used to transform a set of integral equations into matrix form. Then

these matrix equations are solved by the unrelated illumination

method. Numerical simulation for imaging the permittivity distribu-

tion of a buried inhomogeneous dielectric cylinders coated on a con-

ductor has been carried out and good reconstruction has been obtained

even in the presence of Gaussian noise in measured data. This algo-

rithm is very effective and efficient, since no iteration is required.

APPENDIX

The element in the matrix [G1] can be written as

ðG3Þmn ¼ k2
2

ZZ
cell n

G2ðx; y; x0; y0Þ dx0 dy0
� �

x¼xm
y¼ym

;

where (xm, ym) is the observation point located in the center of the

mth cell. For a sufficient small cell, we can replace the cell by a cir-

cular cell with the same cross-section (Richmond, 1965). Let the

equivalent radius of the nth circular cell be an. The (G3)mn can be

expressed in the following form

ðG3Þmn ¼

Gsðxm; ym; xn; ynÞk22 ��Sn

þ j�k2an
2

J1ðk2anÞHð2Þ
0 ðk2�mnÞ; m 6¼ n

Gsðxm; ym; xn; ynÞk22 ��Sn

þ j
2
½�k2anHð2Þ

1 ðK�
2anÞ � 2j�; m ¼ n

8>>>><
>>>>:

with �mn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxm � xnÞ2 þ ðym � ynÞ2

q
, where (xn, yn) is the center

of the cell n. DSn denotes the area of the nth cell. J1 is Bessel func-
tion of the first order.

The element in the matrix [G4] can be written as

ðG4Þmn ¼ � j!�0

Z
segment n

G2ðx; y; x0; y0Þ dl0
� �





x¼xm
y¼ym

;

where (xm, ym) is the observation point located in the center of the

mth cell.

The (G4)mn can be expressed in the following form

ðG4Þmn ¼ �j!�0½Gf ðxm; ym; xn; ynÞ þ Gsðxm; ym; xn; ynÞ��Cn;

where (xn, yn) is the center of the cell n. DCn denotes the length of

the nth segment on the surface of the perfectly conductor.

Similarly,

ðG5Þmn ¼ Gsðxm; ym; xn; ynÞk22 �Sn þ j�k2an
2

J1ðk2anÞHð2Þ
0 ðk2�mnÞ;

ðG6Þmn ¼

�j!�0 � Gsðxm; ym; xn; ynÞ ��Cn

þ !�0

4
�CnH

ð2Þ
0 ðk2�mnÞ; m 6¼ n

�j!�0 � Gsðxm; ym; xn; ynÞ ��Cn

þ !�0

4
�Cn 1� j 2� ln �k2�Cn

4e

h i
;

m ¼ n

8>>>>>><
>>>>>>:

where ln � ¼ 0.5772156649

ðG7Þmn ¼ G1ðxm; ym; xn; ynÞk22�Sn;

ðG8Þmn ¼ j!�0 � G1ðxm; ym; xn; ynÞ�Sn:
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